Mono-, Di- und Trikomplexierung von 9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracen mit Fe(CO)₃-Komplexfragmenten

Hartmut Schulz, Hans Pritzkow und Walter Siebert*

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, W-6900 Heidelberg Eingegangen am 21. März 1991

Key Words: Iron, mono-, bis-, and tris(tricarbonyl) complexes / 9,10-Diboraanthracene, 9,10-dihydro-9,10-dimethyl-

Mono-, Di-, and Tricomplexation of 9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracene with Fe(CO)₃ Complex Fragments

Reaction of 9,10-dihydro-9,10-dimethyl-9,10-diboraanthracene (1c) with (CO)₃Fe(C_BH_{14})₂ gives green (CO)₃Fe(η^6 -1c) (2c), red [(CO)₃Fe]₂(η^4 , η^6 -1c) (3c), and orange [(CO)₃Fe]₃(η^4 , η^4 , η^6 -1c) (4c). The constitutions of 2c, 3c, 4c are derived from NMR and MS data and confirmed by X-ray structure analyses. In 2c the

Fe(CO)₃ group is η^6 -bonded to the heterocycle of planar 1c. 3c is formed from 2c by complexation of the diene of the benzo ring in *anti* position. In 4c both benzo rings of 2c are η^4 bonded to the Fe(CO)₃ groups *anti* to the η^6 -bonded Fe(CO)₃ group.

Alkylderivate des 1,4-Diboracyclohexadiens (A) sind mit $\mathbf{R} = \mathbf{M}\mathbf{e}$. Et nicht stabil und lagern sich in das Carboran **B** um¹, während die Bormethylderivate von 1,4-Dihydro-1,4-diboranaphthalin (C) und von 9,10-Dihydro-9,10-diboraanthracen (1) keine Tendenz zur Umlagerung zeigen. Diese einfach bzw. zweifach benzoanellierten 1,4-Diboracyclohexadiene verdanken ihre Stabilität dem aromatischen Charakter der Carbacyclen. C (R = Me) wird durch eine Ringschlußreaktion zwischen 1,2-Bis(trimethylstannyl)benzol und (Z)-3,4-Bis(dichlorboryl)-3-hexen sowie anschließende Methylierung mit AlMe₃ dargestellt²). Die Umsetzung von 1,2-Diiodbenzol mit BI3 führt unter Abspaltung von vier Äquivalenten I_2 zu $1a^{3}$. Das Chlorderivat 1b entsteht durch thermische Kondensation von 1,2-Bis(dichlorboryl)benzol unter Eliminierung von BCl₃⁴. 1a und 1b reagieren mit MeLi zum Bormethylderivat 1c, das auch durch Pyrolyse von 1-(Chlormethylboryl)-2-(dimethylboryl)benzol erhalten wird⁴⁾. Wir berichten hier über die Ligandeneigenschaften des 9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracens (1c), dessen Umsetzungen mit 14-VE-Metallkomplexfragmenten zur sukzessiven Komplexierung des Borkohlenstoff-Heterocyclus und der Carbacyclen führt.

Ergebnisse und Diskussion Darstellung und Eigenschaften von 2c, 3c und 4c

9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracen (1c)reagiert mit $(CO)_3Fe(C_8H_{14})_2^{5}$ im Verhältnis 1:1 nicht nur zum Monoeisenkomplex 2c, sondern es entstehen auch die Zwei- und Dreikernkomplexe 3c und 4c. Die Verwendung eines Überschusses an $(CO)_3Fe(C_8H_{14})_2$ führt selektiv zu 4c. Wie bei C^{2} wird auch bei 1c der Borkohlenstoff-Heterocyclus auf Grund der Anwesenheit von Donor- und Akzeptorfunktionen bevorzugt komplexiert, so daß im 18-VE-Komplex 2c zwei cisoide Butadiensysteme vorliegen. Die Carbacyclen in 2c treten in Konkurrenz zur Komplexierung von freiem 1c, und somit entsteht beim stöchiometrischen Verhältnis 1:1 stets ein Gemisch aus 2c, 3c und 4c. Die Komplexierung des Borkohlenstoff-Heterocyclus äußert sich in einer deutlichen Hochfeldverschiebung der ¹¹B-NMR-Resonanz von $\delta = 70$ in 1c nach $\delta = 30$ in 2c. Durch die Komplexierung der Carbacyclen kommt es zu einer wei-

+[Fe(CO)₃]

2c

°C0

+2[Fe(CO)3]

4c

Chem. Ber. 124 (1991) 2203 - 2207 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1991 0009 - 2940/91/1010 - 2203 \$ 3.50 + .25/0

Me

teren Hochfeldverschiebung der Borresonanz um jeweils ca. 5 ppm. In Tab. 1 sind die NMR-spektroskopischen Daten von 1c, 2c, 3c und 4c zusammengefaßt.

Während durch die Komplexierung des Heterocyclus die Resonanzen der carbacyclischen C- und H-Atome nur geringfügig beeinflußt werden, zeigen die Signale der quartären C-Atome eine deutliche Hochfeldverschiebung um mehr als 30 ppm. Die Komplexierung der Carbacyclen führt zu einer drastischen Hochfeldverschiebung der Resonanzen für die carbacyclischen C- und H-Atome. Die Signale bei $\delta = 90$ werden in Analogie zu den Eisenkomplexen des Naphthalins⁶⁾ und Butadiens⁷⁾ den zum Bor *meta*-ständigen, die Signale bei $\delta = 62-63$ den zum Bor *ortho*-ständigen C-Atomen zugeordnet. Im ¹H-NMR-Spektrum von **3c** und **4c** ist ebenfalls die Verschiebung der Signale der H-Atome vom aromatischen in den olefinischen Bereich zu beobachten.

Röntgenstrukturanalysen von 2c, 3c und 4c

In **2c**, **3c** und **4c** ist das Eisenatom Fe1 wie in $(CO)_3Fe(C)$ (R = Me)²⁾ an den Heterocyclus jeweils η^6 -koordiniert und hat einen Abstand zum Heterocyclus von 1.71 - 1.73 Å. Die Fe1 – B-Abstände betragen 2.31 - 2.34 und die Fe1 – C-Abstände 2.21 - 2.32 Å, wobei Fe – C11(C12) (Mittel 2.29 Å) länger ist als Fe – C5(C6) (Mittel 2.24 Å). Wir führen dies auf den Einfluß der zu C11 – C12 *trans*-ständigen Carbonylgruppe zurück. Die nicht komplexierten Carbacyclen liegen mit dem Heterocyclus nahezu in einer Ebene.

In 3c und 4c haben die an die Carbacyclen koordinierten Eisenatome einen Abstand von 1.66-1.68 Å zur C₄-Ebene. Diese schließt mit der Ebene des Heterocyclus einen Winkel zwischen 30 und 38° ein. Der Abstand zwischen Eisen und den äußeren C-Atomen des formalen Butadiensystems beträgt 2.14-2.18 Å, zwischen Eisen und den inneren C-Atomen hingegen nur 2.05-2.06 Å. Der mittlere C-C-Abstand

Abb. 1. Molekülstruktur von 2c

Abb. 2. Molekülstruktur von 3c

	1-Н	2 - H		2 ' -H		1'-H	4	-н	11 _B
1c	7.97-7.94	7.32-7	.29	=2-H		=1-H		1.27	70
2C	7.86-7.81	7.07-7	.02	=2-H		=1-H		1.61	30
3C	5.63-5.59	3.36-3	-32	6.95-6.9	0	7.59	-7.54	1.13	24
4c	5.55-5.50	3.24-3	.20	=2-H		=1-H		0.69	19
	C1	C2	C3b)	_{C3} 'b)	C2 '		C1'	C4 ^{b)}	со
1c	135.82	132.56	146	=C3	=C2		=C1	6	-
2c	134.76	130.18	113	=C3	=C2		=C1	-1	211.30
3C	90.46	62.33	124	112	130	.59	135.16	-2	211.19
									209.00
4 c	90.32	63.10	125	=C3	=C2		=C1	-3	211.11
									209.00
a)	¹ H: 200.13	MHz, ¹¹ B	: 28	.75 MHz;		2	4 3 B	, ^{2'}	4.9
b)	Breites Sig	MHz, jew nal.	eils	in C ₆ D ₆ .	1				1
					ļ	\searrow	́∼ _₽ ∕		J

Tab. 1. ¹H-, ¹¹B- und ¹³C-NMR-Daten^{a)} von 1c, 2c, 3c und 4c in C₆D₆

Abb. 3. Molekülstruktur von 4c/I

der Butadiengruppe (Mittel 1.39 Å) ist um durchschnittlich 0.03 Å kürzer als die äußeren Abstände (Mittel 1.42 Å). In den nicht komplexierten Carbacyclen hingegen ist der mittlere Abstand (1.395 Å) länger als die äußeren (1.355 Å). Dies wurde auch für viele Butadiensysteme gefunden⁷).

2c, 3c und 4c besitzen angenähert eine Spiegelebene, die sowohl die Eisenatome, als auch eine CO-Gruppe einer jeden $Fe(CO)_3$ -Gruppe enthält.

Wir danken der Deutschen Forschungsgemeinschaft (SFB 247), dem Fonds der Chemischen Industrie und der BASF AG für die Förderung dieser Arbeit.

Experimenteller Teil

Alle Versuche wurden unter nachgereinigtem Stickstoff durchgeführt. – NMR: Bruker AC-200, Jeol FX-90. – C,H-Analyse: Organisch-Chemisches Institut der Universität Heidelberg. – Die Ausgangsverbindungen $1b^{41}$ und $(CO)_3Fe(C_8H_{14})_2^{51}$ wurden nach Literaturvorschriften hergestellt.

9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracen (1c): 1.5 g (6.1 mmol) 9,10-Dichlor-9,10-dihydro-9,10-diboraanthracen (1b) werden in 30 ml THF suspendiert und bei -40 °C mit 7.7 ml einer 1.6 M MeLi/Et₂O-Lösung versetzt. Man läßt auf Raumtemp. auftauen, wobei die Suspension aufklart. Die gelbe, klare Lösung wird i. Vak. eingeengt und der feste Rückstand bei 120 °C/ 10^{-3} Torr sublimiert, Ausb. 0.75 g (3.7 mmol, 60%) 1c. – MS-EI: m/z (%) = 204 (100) [M⁺], 189 (45) [M⁺ – Me].

Umsetzung von 1c mit $(CO)_3Fe(C_8H_{14})_2$ zu 2c, 3c und 4c: Zu 0.2 g (0.56 mmol) (CO)_3Fe(C_8H_{14})_2 in 2 ml C_8H_{14} und 10 ml Pentan werden 0.12 g (0.59 mmol) 1c in 5 ml Pentan bei Raumtemp. gegeben. Die Suspension färbt sich über grün nach braunrot. Es wird 2 h gerührt, dann das Lösungsmittel i. Vak. entfernt, der feste Rückstand in 3 ml Pentan aufgenommen, von wenig unlöslichem Nie-

	2c	3c	4c/I	4c/II
Formel	C ₁₇ H ₁₄ B ₂ FeO ₃	C ₂₀ H ₁₄ B ₂ Fe ₂ O ₆	C ₂₃ H ₁₄ B ₂ Fe ₃ O ₉	C ₂₃ H ₁₄ B ₂ Fe ₃ O ₉
Molmasse	343.77	483.65	623.53	623.53
Kristallsystem	triklin	triklin	monoklin	monoklin
Raumgruppe	РĪ	РĪ	P2 ₁ /c	P2 ₁ /c
Zellparameter	a= 8.282(6)	a= 8.332(6)	a= 8.912(10)	a=10.562(10)
[A] und [°]	b = 9.408(7)	b=10.878(7)	b=19.964(22)	b=12.773(15)
	c=11.404(8)	c=12.140(9)	c=14.287(17)	c=18.554(22)
	α=71.69(5)	α=64.68(5)		
	β=83.87(6)	β=84.41(6)	β=104.79(8)	β=98.02(9)
	χ=69.05(5)	x=89.86(5)		
Zellvolumen[A ³]	788	989	2458	2479
Z	2	2	4	4
dber [g cm ⁻³]	1.45	1.62	1.68	1.67
μ(Mo-Ka) [cm ⁻¹]	9.1	14.2	17.1	17.0
Kristallgröβe[mm]	0.3.0.4.0.8	0.2.0.3.0.8	0.4.0.4.0.7	0.2.0.3.0.6
Transmissionsber.	0.79-1.00	0.57-0.74	0.56-0.64	0.66-0.74
20 _{тах} [°]	56.0	58.0	50.0	50.0
Refl ex e				
gemessen	3797	5258	4475	3990
beobachtet	2974 (I>2ơi)	3372 (I>2σ ₁)	3040 (I>2ơi)	1903 (I>2σı)
Verfeinerung				
anisotrop	Fe, O, C, B	Fe, O, C, B	Fe, O, C, B	Fe, O
isotrop	н	н	Н	С, В, Н
Zahl der Parameter	264	326	390	217
R	0.034	0.038	0.028	0.056
Rw	0.040	0.042	0.032	0.061
max.Restelektro-				
nendichte [e A-3]	0.2	0.5	0.3	0.7

Tab. 2. Angaben zu den Kristallstrukturanalysen von 2c, 3c, 4c/I und 4c/II

Tab. 3. Atomparameter für 2c

						*
Atom	х		У		Z	U
					0.47050(0)	0.000
Fel	0.57067(4)	0.16840(3)	0.17250(3)	0.039
C1	0.8137(3)	-0.0705(3)	0.4223(2)	0.055
C2	0.8712(4)	-0.2291(3)	0.4357(3)	0.066
C3	0.7697(4)	-0.2958(3)	0.3954(3)	0.067
C4	0.6127(4)	-0.2031(3)	0.3431(2)	0.057
C5	0.5404(3)	-0.0353(3)	0.33107(19)	0.045
C6	0.6458(3)	0.0337(3)	0.37185(18)	0.043
в1	0.5842(3)	0.2128(3)	0.3588(2)	0.048
B2	0.3594(3)	0.0677(3)	0.2734(2)	0.048
C7	0.3392(4)	0.4867(3)	0.2765(3)	0.070
C8	0.1831(4)	0.5794(4)	0.2255(3)	0.082
C9	0.0809(4)	0.5134(4)	0.1864(3)	0.079
C10	0.1369(3)	0.3551(4)	0.1999(3)	0.064
C11	0.2991(3)	0.2487(3)	0.2578(2)	0.049
C12	0.4044(3)	0.3165(3)	0.2984(2)	0.050
C13	0.6994(4)	0.2879(5)	0.4061(4)	0.068
C14	0.2398(5)	-0.0096(5)	0.2325(4)	0.072
C15	0.7592(3)	0.0321(3)	0.1298(2)	0.049
01	0.8802(2)	-0.0575(2)	0.10373(18)	0.072
C16	0.6572(3)	0.3264(3)	0.1199(2)	0.056
02	0.7127(3)	0.4270(3)	0.0827(2)	0.087
C17	0.4534(3)	0.1913(3)	0.0408(2)	0.051
03	0.3833(3)	0.2082(2)	-0.04605(17)	0.075

* \overline{U} ist definiert als 1/3 der Spur des orthogonalisierten Tensors U.

Tab. 4. Atomparameter für 3c

2

Atom	x	У	Z	<u>.</u> *
	0 14041 (E)	0 20441 (4)	0.29880(4)	0 034
rei	0.14241(5) 0.22162(E)	0.30441(4)	0.23000(4) 0.22139(4)	0.039
rez	0.22103(3)	0.77605(4)	0.3658(3)	0 040
C1 C2	0.1034(4)	0.5740(3)	0.3358(3)	0.044
C2	0.0410(4)	0.0336(3)	0.2146(3)	0.047
C3	0.0094(4) 0.1285(4)	0.6551(3)	0.1375(3)	0.041
C5	0.1205(-1) 0.2195(-3)	0.5280(3)	0.1847(3)	0.035
C5	0.2100(3) 0.2552(3)	0.4851(3)	0.3078(3)	0.035
B1	0.3614(4)	0.3655(4)	0.3711(3)	0.038
82	0.2714(4)	0.4512(4)	0.1081(3)	0.038
c7	0.5193(4)	0.1717(4)	0.3432(4)	0.050
C8	0.5738(5)	0.1035(4)	0:2766(4)	0.061
C9	0.5266(5)	0.1385(4)	0.1596(4)	0.063
C10	0.4275(4)	0.2434(4)	0.1108(3)	0.052
C11	0.3748(4)	0.3257(3)	0.1724(3)	0.040
C12	0.4203(3)	0.2872(3)	0.2941(3)	0.038
C13	0.4124(5)	0.3258(4)	0.5040(4)	0.050
C14	0.2300(5)	0.4972(5)	-0.0284(3)	0.051
C15	-0.0520(4)	0.3582(3)	0.3288(3)	0.042
01	-0.1775(3)	0.3906(3)	0.3490(3)	0.065
C16	0.1379(4)	0.1635(3)	0.4492(3)	0.044
02	0.1305(3)	0.0748(3)	0.5433(2)	0.065
C17	0.0615(4)	0.2177(3)	0.2177(3)	0.044
03	0.0069(3)	0.1614(3)	0.1685(2)	0.066
C18	0.4339(4)	0.7537(3)	0.1958(3)	0.047
04	0.5687(3)	0.7366(3)	0.1846(2)	0.071
C19	0.2288(4)	0.8602(3)	0.3202(3)	0.047
05	0.2345(3)	0.9087(3)	0.3862(2)	0.068
C20	0.1993(4)	0.9332(3)	0.0901(3)	0.053
06	0.1886(4)	1.0306(3)	0.0042(3)	0.079

H.Schulz, H. Pritzkow, W. Siebert

derschlag abgetrennt und an SiO_2 /Hexan chromatographiert. Es werden drei Fraktionen erhalten:

1. Grüne Fraktion: 57 mg (0.17 mmol, 29%) 2c, Schmp. 141 °C. – IR: $\tilde{v} = 2052$ (vs), 2001 (s), 1994 cm⁻¹ (s). – MS-EI: m/z (%) = 344 (6) [M⁺], 316 (11) [M⁺ – CO], 288 (41) [M⁺ – 2 CO], 260 (100) [M⁺ – 3 CO].

$$C_{17}H_{14}B_2FeO_3$$
 (343.8) Ber. C 59.40 H 4.11
Gef. C 58.70 H 4.13

2. Rotbraune Fraktion: 29 mg (0.06 mmol, 21%) 3c, Schmp. 155°C. – IR: $\tilde{v} = 2059$ (w), 2046 (vs), 2001 (s), 1998 (s), 1983 cm⁻¹ (s). – MS-EI: m/z (%) = 456 (37) [M⁺ – CO], 428 (58) [M⁺ – 2 CO], 400 (32) [M⁺ – 3 CO], 372 (100) [M⁺ – 4 CO], 344 (67) [M⁺ – 5 CO] und [M⁺ – Fe(CO)₃], 316 (87) [M⁺ – 6 CO] und [M⁺ – Fe(CO)₃ – CO], 288 (9) [M⁺ – Fe(CO)₃ – 2CO], 260 (71) [M⁺ – Fe(CO)₃ – 3 CO].

 $\begin{array}{rl} C_{20}H_{14}B_2Fe_2O_6 \ (483.65) & \mbox{Ber. C} \ 49.67 \ \mbox{H} \ 2.92 \\ & \mbox{Gef. C} \ 48.07 \ \mbox{H} \ 2.78 \end{array}$

3. Orangefarbene Fraktion: 50 mg (0.08 mmol, 43%) 4c, Schmp. 151 °C. – IR: $\tilde{v} = 2062$ (s), 2051 (s), 2040 (vs), 1993 (vs), 1984 (vs), 1981 cm⁻¹ (s). – MS-EI: m/z (%) = 596 (11) [M⁺ – CO], 568 (31) [M⁺ – 2 CO], 540 (31) [M⁺ – 3 CO], 512 (20) [M⁺ – 4 CO],

Tab. 5. Atomparameter für 4c/I

		·····	,	
Atom	x	У	Z	* U
e1	0.12963(5	5) 0.10887(2)	0.16393(3)	0.038
Fe2	0.48280(5	5) 0.25771(2)	0.37865(3)	0.044
Fe3	0.05887(5) -0.08311(2)	0.35174(3)	0.044
21	0.4780(4)	0.18258(18)	0.2670(2)	0.047
22	0.4473(4)	0.24842(19)	0.2313(3)	0.055
23	0.3215(4)	0.28056(18)	0.2531(3)	0.055
24	0.2424(4)	0.24211(16)	0.3098(3)	0.047
C5	0.2234(3	0.16840(14)	0.2979(2)	0.037
26	0.3508(3	0.13586(15)	0.2736(2)	0.038
B1	0.3560(4)	0.06054(18)	0.2576(3)	0.040
B2	0.0823(4)) 0.13092(18)	0.3132(2)	0.040
C7	0.1843(4) -0.05017(16)	0.2503(2)	0.045
C 8	0.0332(4)) -0.07492(16)	0.2050(2)	0.049
C9	-0.0892(4) -0.04253(17)	0.2309(2)	0.047
C10	-0.0446(4	0.00998(16)	0.2996(2)	0.042
C11	0.0850(3) 0.05535(15)	0.2940(2)	0.036
C12	0.2096(3) 0.02304(15)	0.2678(2)	0.039
C13	0.4985(5) 0.0231(2)	0.2332(4)	0.060
C14	-0.0556(4) 0.1671(2)	0.3441(3)	0.050
C15	0.1499(4) 0.17928(17)	0.0921(2)	0.050
01	0.1594(3) 0.22385(13)	0.04373(18)	0.075
C16	0.1647(4) 0.04977(18)	0.0776(2)	0.052
02	0.1844(3) 0.01265(13)	0.02151(18)	0.075
C17	-0.0791(4) 0.11185(17)	0.1282(2)	0.050
03	-0.2103(3) 0.11417(13)	0.10521(17)	0.068
C18	0.4966(4) 0.19500(18)	0.4720(3)	0.051
04	0.5048(3) 0.15602(14)	0.53051(19)	0.076
C19	0.6800(4) 0.28528(16)	0.3985(2)	0.053
05	0.8026(3) 0.30560(13)	0.4124(2)	0.073
C20	0.444Q(4) 0.33013(19)	0.4418(3)	0.065
06	0.4165(3) 0.37638(15)	0.4808(3)	0.105
C21	0.2051(4) -0.05024(17)	0.4528(3)	0.057
07	0.2978(3) ~0.03056(14)	0.5164(2)	0.087
C22	0.1200(4) -0.16864(18)	0.3573(3)	0.058
08	0.1602(3) -0.22316(13)	0.3620(2)	0.088
C23	-0.0907(4) -0.10153(17)	0.4112(3)	0.056
09	-0.1875(3) -0.11139(14)	0.4481(2)	0.081

* \overline{U} ist definiert als 1/3 der Spur des orthogonalisierten Tensors U.

* \overline{U} ist definiert als 1/3 der Spur des orthogonalisierten Tensors U.

Komplexierung von 9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracen mit Fe(CO)₃

Tab. 6. Atomparameter für 4c/II (' isotrop verfeinert)

				_*
Atom	x	У	z	Ŭ
Fe1	0.41247(12)	0.61678(11)	0.35130(6)	0.040
Fe2	0.73066(12)	0.85130(12)	0.46981(7)	0.046
Fe3	0.09967(12)	0.83098(13)	0.20576(7)	0.050
01	0.6007(7)	0.4751(7)	0.4306(5)	0.097
02	0.1959(7)	0.5245(6)	0.4118(4)	0.079
03	0.4012(8)	0.4858(6)	0.2212(4)	0.087
04	0.5498(7)	1.0213(6)	0.4236(4)	0.075
05	0.8153(8)	0.9139(8)	0.6214(4)	0.116
06	0.9622(7)	0.9353(8)	0.4227(4)	0.101
07	0.2679(8)	1.013 6 (7)	0.2373(5)	0.103
08	-0.1426(7)	0.9127(7)	0.2417(5)	0.104
09	0.0305(7)	0.8698(8)	0.0500(4)	0.112
C1	0.5696(7)	0.7558(8)	0.4880(5)	0.044'
C2	0.6882(9)	0.7025(8)	0.4993(5)	0.057
С3	0.7569(9)	0.6991(8)	0.4398(5)	0.054'
C4	0.6956(8)	0.7489(8)	0.3765(5)	0.048'
C5	0.5553(7)	0.7477(7)	0.3564(4)	0.037'
C6	0.4869(7)	0.7538(7)	0.4167(4)	0.037
В1	0.3438(9)	0.7628(9)	0.4079(5)	0.042'
B2	0.4919(9)	0.7420(9)	0.2771(5)	0.041'
C7	0.1341(8)	0.7526(8)	0.3088(5)	0.048'
C8	0.0769(9)	0.6871(9)	0.2516(5)	0.060'
C9	0.1429(8)	0.6776(9)	0.1927(5)	0.057
C10	0.2609(8)	0.7301(8)	0.1980(5)	0.048'
C11	0.3440(7)	0.7424(7)	0.2693(4)	0.038
C12	0.2755(8)	0.7537(7)	0.3285(4)	0.041
C13	0.2633(9)	0.7770(9)	0.4/51(5)	0.058
C14 C15	0.5661(8)	0.7408(9)	0.2086(4)	0.049
C15	0.5270(9)	0.5320(9)	0.4004(5)	0.057
017	0.2809(9)	0.5606(9)	0.3899(5)	0.054
C1/	0.4058(9)	0.53/2(9)	0.2/08(5)	0.056
C10	0.0203(9)	0.9000(0)	0.4400(3)	0.050
C19	0.1198(9)	0.0904(9)	V.3041(0)	0.060
C20	0.0/30(11)	0.9007(9)	0.4432(5) 0.2257(5)	0.062
C22	-0.0517(10)	0.7440(9)	0.2227(5)	0.056
C23	-0.0517(10)	0.0/33(3)	0.2249(5)	0.000
643	0.034/(9)	0.0010(3)	0.1100(0)	0.059

* \overline{U} ist definiert als 1/3 der Spur des orthogonalisierten Tensors U.

484 (37) [M⁺ - 5 CO] und [M⁺ - Fe(CO)₃], 456 (100) [M⁺ - 6 CO] und [M⁺ - Fe(CO)₃ - CO], 428 (63) [M⁺ - 7 CO] und [M⁺ - Fe(CO)₃ - 2 CO], 400 (27) [M⁺ - 8 CO] und [M⁺ -

 $\begin{array}{l} Fe(CO)_3 & -3 \ CO], 372 \ (55) \ [M^+ & -9 \ CO] \ und \ [M^+ & -Fe(CO)_3 \ -\\ 4 \ CO], 344 \ (36) \ [M^+ & -Fe(CO)_3 \ - 5 \ CO] \ und \ [M^+ \ - 2 \ Fe(CO)_3], \\ 316 \ (48) \ [M^+ \ - Fe(CO)_3 \ - 6 \ CO] \ und \ [M^+ \ - 2 \ Fe(CO)_3 \ - CO], \\ 288 \ (6) \ [M^+ \ - 2 \ Fe(CO)_3 \ - 2 \ CO], 260 \ (46) \ [M^+ \ - 2 \ Fe(CO)_3 \ - \\ 3 \ CO], 204 \ (10) \ [M^+ \ - 3 \ Fe(CO)_3]. \end{array}$

 $C_{23}H_{14}B_2Fe_3O_9$ (623.5) Ber. C 44.31 H 2.26 Gef. C 43.73 H 2.28

Kristallstrukturanalysen von 2c, 3c und 4c: Komplex 4c kristallisiert in zwei Modifikationen. Angaben zu den Strukturbestimmungen sind in Tab. 2 zusammengefaßt. Die Atomparameter sind in Tab. 3–6 aufgeführt. Die Intensitäten wurden mit einem Vierkreisdiffraktometer (Mo- K_{α} -Strahlung, Graphitmonochromator, ω -Scan) gemessen. Alle Rechnungen wurden mit den Programmen SHELX76 und SHELXS86⁸⁾ durchgeführt.

Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55439, der Autorennamen und des Zeitschriftenzitats angefordert werden.

CAS-Registry-Nummern

1b: 4978-77-2 / **1c:** 62025-67-6 / **2c:** 134286-01-4 / **3c:** 134332-59-5 / **4c:** 134286-00-3 / (CO)₃Fe(C₈H₁₄)₂: 88657-71-0

- ²⁾ A. Feßenbecker, H. Schulz, H. Pritzkow, W. Siebert, *Chem. Ber.* **123** (1990) 2273.
- ³⁾ B. Asgarouladi, R. Full, K. J. Schaper, W. Siebert, Chem. Ber. 107 (1974) 34.
- ⁴⁾ W. Schacht, D. Kaufmann, J. Organomet. Chem. 331 (1987) 139.
 ⁵⁾ H. Fleckner, F. W. Grevels, D. Hess, J. Am. Chem. Soc. 106 (1984) 2027.
- ⁹ H. Schäufele, D. Hu, H. Pritzkow, U. Zenneck, Organometallics 8 (1989) 396.
- ⁷⁾ A. J. Deeming in Comprehensive Organometallic Chemistry, Bd. 4 (G. Wilkinson, F. G. A. Stone, E. W. Abel, Eds.), Pergamon Press, Oxford 1982.
- ⁸⁾ G. M. Sheldrick, SHELX76, Program for Crystal Structure Determination, Univ. of Cambridge 1976; SHELXS86, Univ. Göttingen 1986.

[130/91]

¹⁾ P. Binger, Tetrahedron Lett. 1966, 2675.